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Abstract. The importance of Markov blanket discovery algorithms is
twofold: as the main building block in constraint-based structure learn-
ing of Bayesian network algorithms and as a technique to derive the
optimal set of features in filter feature selection approaches. Equally,
learning from partially labelled data is a crucial and demanding area of
machine learning, and extending techniques from fully to partially super-
vised scenarios is a challenging problem. While there are many different
algorithms to derive the Markov blanket of fully supervised nodes, the
partially-labelled problem is far more challenging, and there is a lack of
principled approaches in the literature. Our work derives a generaliza-
tion of the conditional tests of independence for partially labelled binary
target variables, which can handle the two main partially labelled scenar-
ios: positive-unlabelled and semi-supervised. The result is a significantly
deeper understanding of how to control false negative errors in Markov
Blanket discovery procedures and how unlabelled data can help.
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1 Introduction

Markov Blanket (MB) is an important concept that links two of the main ac-
tivities of machine learning: dimensionality reduction and learning. Using Pellet
& Elisseef’s [15] wording “Feature selection and causal structure learning are
related by a common concept: the Markov blanket.”

Koller & Sahami [10] showed that the MB of a target variable is the optimal
set of features for prediction. In this context discovering MB can be useful for
eliminating irrelevant features or features that are redundant in the context
of others, and as a result plays a fundamental role in filter feature selection.
Furthermore, Markov blankets are important in learning Bayesian networks [14],
and can also play an important role in causal structure learning [15].

In most real world applications, it is easier and cheaper to collect unlabelled
examples than labelled ones, so transferring techniques from fully to partial-
labelled datasets is a key challenge. Our work shows how we can recover the
MB around partially labelled targets. Since the main building block of the MB
discovery algorithms is the conditional test of independence, we will present a
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method to apply this test despite the partial labelling and how we can use the
unlabelled examples in an informative way.

Section 4 explores the scenario of positive-unlabelled data. This is a special
case of partially-labelling, where we have few labelled examples only from the
positive class and a vast amount of unlabelled examples. Section 5 extends our
work to semi-supervised data, where the labelled set contains examples from both
classes. Finally, Section 6 presents a semi-supervised scenario that can occur in
real world, the class prior change scenario, and shows how our approach performs
better than the state of the art 1.

Before the formal presentation of the background material (Sections 2 and
3) we will motivate our work with a toy Bayesian network presented in Figure
1. The MB of the target variable Y is the feature set that contains the parents
(X4 and X5), children (X9 and X10) and spouses (X7 and X8, which are other
parents of a child of Y ) of the target. There exist many techniques to derive
MB by using fully-supervised datasets, Figure 1(a). But our work will focus on
partially labelled scenarios where we have the values of Y only for a small subset
of examples, Figure 1(b), while all the other variables are completely observed.
We will suggest ways to derive the MB by controlling the two possible errors in
the discovery procedure:
Falsely adding variables to the predicted Markov blanket: for example

assuming that the variable X11 belongs to MB.
Falsely not adding variables to the predicted Markov blanket: for exam-

ple assuming the variable X4 does not belong to MB.

X0 X0 X0 X1 X0 X2 X0

X3 X0 X4 X0 X5 X0 X6

X0 X7 X0 1Y1 X0 X8 X0

X0 X0 X9 X0 X10 X0 X0

X0 X0 X0 X11 X0 X0

X0

(a) MB in fully supervised target

X0 X0 X0 X1 X0 X2 X0

X3 X0 X4 X0 X5 X0 X6

X0 X7 X0 1Y1 X0 X8 X0

X0 X0 X9 X0 X10 X0 X0

X0 X0 X0 X11 X0 X0 X0

X0

(b) MB in partially labelled target

Fig. 1: Toy Markov blanket example where: white nodes represent the target
variable, black ones the features that belong to the MB of the target and grey
ones the features that do not belong to the MB. In (a) we know the value of the
target over all examples, while in (b) the target is partially observed (dashed
circle) meaning that we know its value only in a small subset of the examples.

1 Matlab code and the supplementary material with all the proofs are available in
www.cs.man.ac.uk/~gbrown/partiallylabelled/.
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2 Background: Markov blanket

In this section we will introduce the notation and the background material on
Markov blanket discovery algorithms. Assuming that we have a binary classifi-
cation dataset D = {(xi, yi)|i = 1, ..., N}, where the target variable Y takes the
value y+ when the example is positive, and y− when the example is negative.
The feature vector x = [x1...xd] is a realization of the d-dimensional joint ran-
dom variable X = X1...Xd. With a slight abuse of notation, in the rest of our
work, we interchange the symbol for a set of variables and for their joint random
variable. Following Pearl [14] we have the following definitions.

Definition 1 (Markov blanket — Markov boundary).
The Markov blanket of the target Y is a set of features XMB with the property
Y ⊥⊥ Z|XMB for every Z ⊆ X\XMB. A set is called Markov boundary if it is a
minimal Markov blanket, i.e. non of its subsets is a Markov blanket.

In probabilistic graphical models terminology, the target variable Y becomes
conditionally independent from the rest of the graph X\XMB given its Markov
blanket XMB.

Learning the Markov blanket for each variable of the dataset, or in other
words inferring the local structure, can naturally lead to causal structure learning
[15]. Apart from playing a huge role in structure learning of a Bayesian network,
Markov blanket is also related to another important machine learning activity:
feature selection.

Koller & Sahami [10] published the first work about the optimality of Markov
blanket in the context of feature selection. Recently, Brown et al. [5] introduced a
unifying probabilistic framework and showed that many heuristically suggested
feature selection criteria, including Markov blanket discovery algorithms, can
be seen as iterative maximizers of a clearly specified objective function: the
conditional likelihood of the training examples.

2.1 Markov blanket discovery algorithms

Margaritis & Thrun [12] introduced the first theoretically sound algorithm for
Markov blanket discovery, the Grow-Shrink (GS) algorithm. This algorithm con-
sists of two-stages: growing where we add features to the Candidate Markov
Blanket (CMB) set until the point that the remaining features are independent
with the target given the candidate blanket, and shrinkage, where we remove po-
tential false positives from the CMB. Tsamardinos & Aliferis [21] suggested an
improved version to this approach, the Incremental Association Markov Blanket
(IAMB), which can be seen in Algorithm 1. Many measures of association have
been used to decide which feature will be added in the candidate blanket during
the growing phase (Alg. 1 - Line 4), with the main being the conditional mutual
information [17]. But, Yaramakala & Margaritis [23] suggested the use of the
significance of the conditional test of independence, which is more appropriate
in statistical terms than the raw conditional mutual information value. Finally,
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there is another class of algorithms that try to control the size of condition-
ing test in a two-phase procedure: firstly identify parent-children, then identify
spouses. The most representative algorithms are the HITON [2] and the Max-
Min Markov Blanket (MMMB) [22]. All of these algorithms assume faithfulness
of the data distribution. As we already saw, in all Markov blanket discovery
algorithms, the conditional test of independence (Alg. 1 - Line 5 and 11) plays
a crucial role, and this is the focus of the next paragraph.

Algorithm 1: Incremental Association Markov Blanket (IAMB)

Input : Target Y , Features X = X1...Xd, Significance level α
Output: Markov Blanket: XCMB

1 Phase I: forward — growing
2 XCMB = ∅
3 while XCMB has changed do
4 Find X ∈ X\XCMB most strongly related with Y given XCMB

5 if X⊥⊥Y |XCMB using significance level α then
6 Add X to XCMB

7 end

8 end
9 Phase II: backward — shrinkage

10 foreach X ∈ XCMB do
11 if X ⊥⊥ Y |XCMB\X using significance level α then
12 Remove X from XCMB

13 end

14 end

2.2 Testing conditional independence in categorical data

IAMB needs to test the conditional independence of X and Y given a subset of
features Z, where in Line 5 Z = XCMB while in Line 11 Z = XCMB\X. In fully
observed categorical data we can use the G-test, a generalised likelihood ratio
test, where the test statistic can be calculated from sample data counts arranged
in a contingency table [1].

G-statistic: We denote by Ox,y,z the observed count of the number of times
the random variable X takes on the value x from its alphabet X , Y takes on y ∈
Y and Z takes on z ∈ Z, where z is a vector of values when we condition on more
than one variable. Furthermore denote by Ox,.,z, O.,y,z and O.,.,z the marginal
counts. The estimated expected frequency of (x, y, z), assuming X,Y are condi-

tional independent given Z , is given by Ex,y,z =
Ox,.,zO.,y,z

O.,.,z
= p̂(x|z)p̂(y|z)O.,.,z.

To calculate the G-statistic we use the following formula:

Ĝ-statistic = 2
∑
x,y,z

Ox,y,z ln
Ox,y,z

Ex,y,z
= 2

∑
x,y,z

Ox,y,z ln
O.,.,zOx,y,z

Ox,.,zO.,y,z
= (1)

= 2N
∑
x,y,z

p̂(x, y, z) ln
p̂(x, y|z)

p̂(x|z)p̂(y|z)
= 2NÎ(X;Y |Z), (2)
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where Î(X;Y |Z) is the maximum likelihood estimator of the conditional mutual
information between X and Y given Z [8].

Hypothesis testing procedure: Under the null hypothesis that X and
Y are statistically independent given Z, the G-statistic is known to be asymp-
totically χ2-distributed, with ν = (|X | − 1)(|Y| − 1)|Z| degrees of freedom [1].

Knowing that and using (2) we can calculate the p̂XY |Z value as 1−F (Ĝ), where

F is the CDF of the χ2-distribution and Ĝ the observed value of the G-statistic.
The p-value represents the probability of obtaining a test statistic equal or more
extreme than the observed one, given that the null hypothesis holds. After cal-
culating this value, we check to see whether it exceeds a significance level α. If
pXY |Z ≤ α, we reject the null hypothesis, otherwise we fail to reject it. This is
the procedure that we follow to take the decision in Lines 5 and 11 of the IAMB
algorithm 1. Furthermore, to choose the most strongly related feature in Line 4,
we evaluate the p-values and choose the feature with the smaller one.

Different types of error: Following this testing procedure, two possible
types of error can occur. The significance level α defines the probability of Type
I error or False Positive rate, that the test will reject the null hypothesis when
the null hypothesis is in fact true. While the probability of Type II error or False
Negative rate, which is denoted by β, is the probability that the test will fail to
reject the null hypothesis when the alternative hypothesis is true and there is
an actual effect in our data. Type II error is closely related with the concept of
statistical power of a test, which is the probability that the test will reject the
null hypothesis when the alternative hypothesis is true, i.e. power = 1− β.

Power analysis: With such a test, it is common to perform an a-priori power
analysis [7], where we would take a given sample size N, a required significance
level α, an effect size ω, and would then compute the power of the statistical test
to detect the given effect size. In order to do this we need a test statistic with
a known distribution under the alternative hypothesis. Under the alternative
hypothesis (i.e. when X and Y are dependent given Z), the G-statistic has a
large-sample non-central χ2 distribution [1, Section 16.3.5]. The non-centrality
parameter (λ) of this distribution has the same form as the G-statistic, but
with sample values replaced by population values, λ = 2NI(X;Y |Z). The effect
size of the G-test can be naturally expressed as a function of the conditional
mutual information, since according to Cohen [7] the effect size (ω) is the square
root of the non-centrality parameter divided by the sample, thus we have ω =√

2I(X;Y |Z).

Sample size determination: One important usage of a-priori power anal-
ysis is sample size determination. In this prospective procedure we specify the
probability of Type I error (e.g. α = 0.05), the desired probability of Type II
error (e.g. β = 0.01 or power = 0.99) and the desired effect size that we want to
observe, and we can determine the minimum number of examples (N) that we
need to detect that effect.
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2.3 Suggested approach for semi-supervised MB discovery

To the best of our knowledge, there is only one algorithm to derive the MB
of semi-supervised targets: BASSUM (BAyesian Semi-SUpervised Method) [6].
BASSUM follows the HITON approach, finding firstly the parent-child nodes
and then the spouses, and tries to take into account both labelled and unla-
belled data. BASSUM makes the “traditional semi-supervised” assumption that
the labelled set is an unbiased sample of the overall population, and it uses the
unlabelled examples in order to improve the reliability of the conditional inde-
pendence tests. For example to estimate the G-statistic, in equation (1), it uses
both labelled and unlabelled data for the observed counts O.,.,z and Ox,.,z. This
technique is known in statistics as available case analysis or pairwise deletion,
and is affected by the ambiguity over the definition of the overall sample size,
which is crucial for deriving standard errors and the sampling distributions (the
reader can find more details on this issue in Allison [3, page 8]). This can lead to
unpredictable results, for example there are no guarantees that the G-statistic
will follow χ2 distribution after this substitution. Another weakness of BAS-
SUM is that it cannot be applied in partially labelled environments where we
have the restriction that the labelled examples come only from one class, such as
the positive-unlabelled data. In order to explore the Markov blanket of this type
of data we should explore how to test conditional independence in this scenario
and this is the focus of Section 4. Before that, we will formally introduce the
partially-labelled data in the following section.

3 Background: Partially-labelled data

In this section we will give the background for the two partially-labelled problems
on which we will focus: positive-unlabelled and semi-supervised.

3.1 Positive-unlabelled data

Positive-Unlabelled (PU) data refers to situations where we have a small number
of labelled examples from the positive class, and a large number of entirely un-
labelled examples, which could be either positive or negative. For reasoning over
PU data we will follow the formal framework of Elkan & Noto [9]. Assume that
a dataset D is drawn i.i.d. from the joint distribution p(X, Y, SP ), where X and
Y are random variables describing the feature set and the target variable, while
SP is a further random variable with possible values ‘s+P ’ and ‘s−P ’, indicating
if the positive example is labelled (s+P ) or not (s−P ). We sample a total number
of N examples out of which NS+

P
are labelled as positives. Thus p(x|s+P ) is the

probability of X taking the value x from its alphabet X conditioned on the
labelled set. In this context, Elkan & Noto formalise the selected completely at
random assumption, stating that the examples for the labelled set are selected
completely at random from all the positive examples:

p(s+P |x, y
+) = p(s+P |y

+) ∀ x ∈ X . (3)
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Building upon this assumption, Sechidis et al. [19] proved that we can test
independence between a feature X and the unobservable variable Y, by simply
testing the independence between X and the observable variable SP , which can
be seen as a surrogate version of Y. While this assumption is sufficient for testing
independence and guarantees the same probability of false positives, it leads to
a less powerful test, and the probability of committing a false negative error is
increased by a factor which can be calculated using prior knowledge over p(y+).
With our current work we extend this approach to test conditional independence.

3.2 Semi-supervised data

Semi-Supervised (SS) data refer to situations where we have a small number of
labelled examples from both classes and a large number of unlabelled examples.
For reasoning over semi-supervised data we will follow the formal framework of
Smith & Elkan [20]. Assuming that the dataset is drawn i.i.d. from the joint
distribution p(X, Y, S), where S describes whether an example is labelled (s+)
or not (s−). We sample a total number of N examples out of which NS+ are
labelled as positive or negative. Smith & Elkan [20] presented the “traditional
semi-supervised” scenario, where the labels are missing completely at random
(MCAR), so the labelled set is an unbiased sample of the population. But apart
from this traditional scenario, there are many alternative scenarios that can lead
to semi-supervised data [20]. In our work, we will focus on the scenario where
labelling an example is conditionally independent of the features given the class:

p(s+|x, y) = p(s+|y) ∀ x ∈ X , y ∈ Y. (4)

This assumption can be seen as a straightforward extension of the selected com-
pletely at random assumption in the semi-supervised scenario, and it is fol-
lowed in numerous semi-supervised works [11, 16, 18]. A practical application
where we can use this assumption is in class-prior-change scenario [16], which
occurs when the class balance in the labelled set does not reflect the popula-
tion class balance. This sampling bias is created because the labels are missing
not at random (MNAR), and the missingness mechanism depends directly on
the class. The “traditional semi-supervised” assumption is as a restricted ver-
sion of the assumption described in equation (4), when we furthermore assume
p(s+|y) = p(s+) ∀ y ∈ Y.

4 Markov blanket discovery in positive-unlabelled data

In this section we present a novel methodology for testing conditional indepen-
dence in PU data. We will then see how we can use this methodology to derive
Markov blanket despite the labelling restriction.

4.1 Testing conditional independence in PU data

With the following theorem we prove that a valid approach to test conditional
independence is to assume all unlabelled examples to be negative and as a result
use the surrogate variable SP instead of the unobservable Y.
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Theorem 1 (Testing conditional independence in PU data).
In the positive unlabelled scenario, under the selected completely at random as-
sumption, a variable X is independent of the class label Y given a subset of
features Z if and only if X is independent of SP given Z, so it holds:

X ⊥⊥ Y |Z⇔ X ⊥⊥ SP |Z.

The proof of the theorem is available in the supplementary material. Now we
will verify the consequences of this theorem in the context of Markov blanket
discovery. We use four widely used networks; Appendix A contains all details on
data generation and on the experimental protocol. For these networks we know
the true Markov blankets and we compare them with the discovered blankets
through the IAMB algorithm. As we observe from Figure 2 using SP instead of
Y in the IAMB algorithm does not result to a statistical significant difference
in the false positive rate, or in Markov blanket terminology the blankets derived
from these two approaches are similar in terms of the variables that were falsely
added to the blanket.
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(b) N = 5000, p(s+P ) = 0.05

Fig. 2: Verification of Theorem 1. This illustrates the average number of variables
falsely added in MB and the 95% confidence intervals over 10 trials when we use
IAMB with Y and SP . (a) for total sample size N = 2000 out of which we label
only 100 positive examples and (b) for total sample size N = 5000 out of which
we label only 250 positives.

But, while Theorem 1 tells us that the probability of committing an error is
the same for the two tests G(X;Y |Z) and G(X;SP |Z) when X ⊥⊥ Y |Z, it does
not say anything about the performance of these tests when the variables are
conditionally dependent. In this case, we should compare the power of the tests,
and in order to do so we should explore the non-centrality parameters of the two
conditional G-tests of independence.

Theorem 2 (Power of PU conditional test of independence).
In the positive unlabelled scenario, under the selected completely at random as-
sumption, when a variable X is dependent on the class label Y given a subset of
features Z, X⊥⊥Y |Z, we have: I(X;Y |Z) > I(X;SP |Z).
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While with the following theorem we will quantify the amount of power that we
are loosing with the naive assumption of all unlabelled examples being negative.

Theorem 3 (Correction factor for PU test).
The non-centrality parameter of the conditional G-test between X and SP given
a subset of features Z takes the form:

λG(X;SP |Z) = κPλG(X;Y |Z) = κP 2NI(X;Y |Z),

where κP = 1−p(y+)
p(y+)

p(s+P )

1−p(s+P )
= 1−p(y+)

p(y+)

N
S
+
P

N−N
S
+
P

.

The proofs of the last two theorems are also available in the supplementary
material. So, by using prior knowledge over the p(y+) we can use the naive test
for sample size determination, and decide the amount of data that we need in
order to have similar performance with the unobservable fully supervised test.
Now we will illustrate the last theorems again in the context of MB discovery.
A direct consequence of Theorem 2 is that using SP instead of Y results in a
higher number of false negative errors. In the MB discovery context this will
result in a larger number of variables falsely not added to the predicted blanket,
since we assumed that the variables were independent when in fact they were
dependent. In order to verify experimentally this conclusion we will compare
again the discovered blankets by using SP instead of Y. As we see in Figure
3, the number of variables that were falsely not added is higher when we are
using SP . This Figure also verifies Theorem 3, where we see that the number of
variables falsely removed when using the naive test G(X;SP |Z) with increased
sample size N/κP is the same as when using the unobservable test G(X;Y |Z)
with N data.
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Fig. 3: Verification of Theorems 2 and 3. This illustrates the average number of
variables falsely not added to the MB and the 95% confidence intervals over 10
trials when we use IAMB with Y and SP . (a) for total sample size N = 2000
and (b) for total sample size N = 5000. In all the scenarios we label 5% of the
total examples as positives.
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4.2 Evaluation of Markov blanket discovery in PU data

For an overall evaluation of the derived blankets using SP instead of Y we will use
the F -measure, which is the harmonic mean of precision and recall, against the
ground truth [17]. In Figure 4, we observe that the assumption of all unlabelled
examples to be negative gives worse results than the fully-supervised scenario,
and that the difference between the two approaches gets smaller as we increase
sample size. Furthermore, using the correction factor κP to increase the sample
size of the naive approach makes the two techniques perform similar.
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Fig. 4: Comparing the performance in terms of F -measure when we use IAMB
with Y and SP . (a) for total sample size N = 2000 and (b) for total sample size
N = 5000. In all the scenarios we label 5% of the total examples as positives.

5 Markov blanket discovery in semi-supervised data

In this section we will present two informative ways, in terms of power, to test
conditional independence in semi-supervised data. Then we will suggest an algo-
rithm for Markov blanket discovery where we will incorporate prior knowledge
to choose the optimal way for testing conditional independence.

5.1 Testing conditional independence in semi-supervised data

We will introduce two variables in the semi-supervised scenario, which can be
seen as noisy versions of the unobservable random variable Y. The first one is
SP , which we already used in the PU scenario, and is a binary random variable
that takes the value s+P when a positive example is labelled, and s−P in any other
case. The second variable is SN , which is also a binary random variable that
takes the value s+N when a negative example is labelled and s−N otherwise. Using
these two variables, the selected completely at random assumptions described in
equation (4) can be written as:

p(s+P |x, y
+) = p(s+P |y

+) and p(s+N |x, y
−) = p(s+N |y

−) ∀ x ∈ X .
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So, using SP instead of Y is equivalent to making the assumption that all un-
labelled examples are negative, as we did in the positive-unlabelled scenario,
while using SN instead of Y is equivalent to assuming all unlabelled examples
being positive. In this section we will prove the versions of the three theorems we
presented earlier for both variables SP and SN in the semi-supervised scenario.

Firstly we will show that testing conditional independence by assuming the
unlabelled examples to be either positive or negative is a valid approach.

Theorem 4 (Testing conditional independence in SS data).
In the semi-supervised scenario, under the selected completely at random as-
sumption, a variable X is independent of the class label Y given a subset of
features Z if and only if X is independent of SP given Z and the same result
holds for SN : X ⊥⊥ Y |Z⇔ X ⊥⊥ SP |Z and X ⊥⊥ Y |Z⇔ X ⊥⊥ SN |Z.

Proof. Since the selected completely at random assumption holds for both classes,
this theorem is a direct consequence of Theorem 1.

The consequence of this assumption is that the derived conditional tests of in-
dependence are less powerful that the unobservable fully supervised test, as we
prove with the following theorem.

Theorem 5 (Power of the SS conditional tests of independence).
In the semi-supervised scenario, under the selected completely at random assump-
tion, when a variable X is dependent of the class label Y given a subset of features
Z, X⊥⊥Y |Z, we have: I(X;Y |Z) > I(X;SP |Z) and I(X;Y |Z) > I(X;SN |Z).

Proof. Since the selected completely at random assumption holds for both classes,
this theorem is a direct consequence of Theorem 2.

Finally, with the following theorem we can quantify the amount of power that
we are loosing by assuming that the unlabelled examples are negative (i.e. using
SP ) or positive (i.e. using SN ).

Theorem 6 (Correction factors for SS tests).
The non-centrality parameter of the conditional G-test can take the form:

λG(X;SP |Z) = κPλG(X;Y |Z) = κP 2NI(X;Y |Z) and

λG(X;SN |Z) = κNλG(X;Y |Z) = κN2NI(X;Y |Z),

where κP = 1−p(y+)
p(y+)

p(s+P )

1−p(s+P )
and κN = p(y+)

1−p(y+)

p(s+N )

1−p(s+N )
.

Proof. Since the selected completely at random assumption holds for both classes,
this theorem is a direct consequence of Theorem 3.

5.2 Incorporating prior knowledge on Markov blanket discovery

Since using SP or SN are both valid approaches it is preferable to use the most
powerful test. In order to do so, we can use some “soft” prior knowledge over
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the probability p(y+)2. We call it “soft” because there is no need to know the
exact value, but we only need to know if it is greater or smaller than a quantity
calculated from the observed dataset. The following corollary gives more details.

Corollary 1 (Incorporating prior knowledge).
In order to have the smallest number of falsely missing variables from the Markov
Blanket we should use SP instead of SN , when the following inequality holds

κP > κN ⇔ p(y+) <
1

1 +

√
(1−p(s+P ))p(s+N )

p(s+P )(1−p(s+N ))

.

When the opposing inequality holds the most powerful choice is SN . When equal-
ity holds, both approaches are equivalent.

We can estimate p(s+P ) and p(s+N ) from the observed data, and, using some
prior knowledge over p(y+), we can decide the most powerful option. In Figure
5 we compare in terms of F -measure the derived Markov blankets when we use
the most powerful and the least powerful choice. As we observe by incorporating
prior knowledge as Corollary 1 describes, choosing to test with the most powerful
option, results in remarkably better performance than with the least powerful
option.
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Fig. 5: Comparing the performance in terms of F -measure when we use the
unobservable variable Y and the most and least powerful choice between SP

and SN . (a) for sample size N = 2000 out of which we label only 100 positive
and 100 negative examples and (b) for sample size N = 5000 out of which we
label only 250 positive and 250 negative examples.

2 When the labelling depends directly in the class, eq. (4), we cannot have an unbiased
estimator for this probability without further assumptions, more details in [16].
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6 Exploring our framework under class prior change —
When and how the unlabelled data help

In this section, we will present how our approach performs in a real world prob-
lem where the class balance in the labelled set does not reflect the balance over
the overall population; such situation is known as class-prior-change [16]. We
compare our framework with the following two approaches: ignoring the unla-
belled examples, a procedure known in statistic as listwise deletion [3], or using
the unlabelled data to have more reliable estimates for the marginal counts of
the features, a procedure known in statistics as available case analysis or pair-
wise deletion [3]. The latter is followed in BASSUM [6]; Section 2.3 gives more
details about this approach and its limitations.

Firstly, let’s assume that the semi-supervised data are generated under the
“traditional semi-supervised” scenario, where the labelled set is an unbiased
sample from the overall population. As a result, the class-ratio in the labelled
set is the same to the population class-ratio. In mathematical notation it holds
p(y+|s+)
p(y−|s+) = p(y+)

p(y−) , where the lhs is the class-ratio in the labelled set and in rhs the

population class-ratio. As we observe in Figure 6, choosing the most powerful
option between SP and SN performs similarly with ignoring completely the
unlabelled examples. As it was expected, using the semi-supervised data with
pairwise deletion has unpredictable performance and often performs much worse
than using only the labelled examples.
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Fig. 6: Traditional semi-supervised scenario. Comparing the performance in
terms of F -measure when we have the same class-ratio in the labelled-set as
in the overall population. (a) for sample size N = 2000 out of which we label
only 200 examples and (b) N = 5000 out of which we label only 250 examples.

Now, let’s assume we have semi-supervised data under the class-prior-change
scenario (for more details see Section 3.2). In our simulation we sample the
labelled data in order to have a class ratio in the labelled set inverse than the

population ratio. In mathematical notation it holds p(y+|s+)
p(y−|s+) =

(
p(y+)
p(y−)

)−1
, where

the lhs is the class-ratio in the labelled set and in rhs the inverse of the population
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class-ratio. As we observe in Figure 7, choosing the most powerful option between
SP and SN performs statistically better than ignoring the unlabelled examples.
Our approach performs better on average than the pairwise deletion, while the
latter one performs comparably to the listwise deletion in many settings.
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Fig. 7: Class prior change semi-supervised scenario. Comparing the performance
in terms of F -measure when we have inverse class-ratio in the labelled-set than
in the overall population. (a) for sample size N = 2000 out of which we label
only 200 examples and (b) N = 5000 out of which we label only 250 examples.

Furthermore, our approach can be applied in scenarios where we have labelled
examples only from one class, which cannot be handled with the other two
approaches. Also, with our approach, we can control the power of our tests, which
is not the case in pairwise deletion procedure. To sum up, in class-prior-change
scenarios we can use Corollary 1 and some “soft” prior knowledge over p(y+)
in order to decide which of the following two assumptions is better: to assume
all unlabelled examples are negative (i.e. use SP ) or to assume all unlabelled
examples are positive (i.e. use SN ).

7 Conclusions and future work

With our work we derive a generalization of conditional tests of independence for
partially labelled data and we present a framework on how we can use unlabelled
data for discovering Markov blankets around partially labelled target nodes.

In positive-unlabelled data, we proved that assuming all unlabelled examples
are negative is sufficient for testing conditional independence but it will increase
the number of the variables that are falsely missing from the predicted blanket.
Furthermore, with a correction factor, we quantified the amount of power we
are losing by this assumption, and we present how we can take this into account
for adjusting the sample size in order to perform the same as in fully-supervised
scenarios.

Then, we extended our methodology to semi-supervised data, where we can
make two valid assumptions over the unlabelled examples: assume them either
positive or negative. We explored the consequences of these two assumptions
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again in terms of possible errors in Markov blanket discovery procedures, and
we suggested a way to use some “soft” prior knowledge to take the optimal
decision. Finally, we presented a practical semi-supervised scenario in which the
usage of unlabelled examples under our framework proved to be more beneficial
compared to other suggested approaches.

A future research direction could be to explore how we can use our method-
ology for structure learning of Bayesian networks. Since our techniques are in-
formative in terms of power, they can be used in structure learning approaches
that have control over the false negative rate to prevent over constraint struc-
tures; for example, our framework generalises the work presented by Bacciu et
al. [4] for partially-labelled data. Furthermore, our work for structure learning
in partially labelled data can be used in combination with recently suggested
methods for parameter learning from incomplete data by Mohan et al. [13].

A Generation of network data and experimental protocol

The networks used are standard benchmarks for Markov blanket discovery taken
from the Bayesian network repository3. For target variables we used nodes that
have at least one child, one parent and one spouse in their Markov blanket.
Furthermore we chose as positive examples (y+) those examples with class value
1, while the rest of the examples formed the negative set. We also focused in
nodes that had prior probability p(y+) between 0.15 and 0.50, which is an area
of interest for PU data. For the supervised scenarios (i.e. when we used the
variable Y ) we perform 10 trials of size N = 2000 and 5000. For each trial we
sample 30 different partially labelled datasets, and the outcome was the most
frequently derived Markov blanket. For all experiments we fixed the significance
of the tests to be α = 0.10. Table 1 presents the summary of the Networks used
in the current work.

Table 1: A summary of the networks used in the experimental studies

Network
Number of Total number Average MB size Average prior prob.

target nodes of nodes of target nodes p(y+) of target nodes

alarm 5 37 5.6 0.21
insurance 10 27 6.2 0.32

barley 10 48 5.6 0.31
hailfinder 20 56 4.9 0.31

Acknowledgments. The research leading to these results has received funding
from EPSRC Anyscale project EP/L000725/1 and the European Union’s Sev-
enth Framework Programme (FP7/2007-2013) under grant agreement no 318633.
This work was supported by EPSRC grant [EP/I028099/1]. Sechidis gratefully
acknowledges the support of the Propondis Foundation.

3 Downloaded from http://www.bnlearn.com/bnrepository/



16 K. Sechidis and G. Brown

References

1. Agresti, A.: Categorical Data Analysis. Wiley Series in Probability and Statistics,
Wiley-Interscience, 3rd edn. (2013)

2. Aliferis, C.F., Statnikov, A., Tsamardinos, I., Mani, S., Koutsoukos, X.D.: Lo-
cal causal and markov blan. induction for causal discovery and feat. selection for
classification part I: Algor. and empirical eval. JMLR 11, 171–234 (2010)

3. Allison, P.: Missing Data. Sage University Papers Series on Quantitative Applica-
tions in the Social Sciences, 07-136 (2001)

4. Bacciu, D., Etchells, T., Lisboa, P., Whittaker, J.: Efficient identification of inde-
pendence networks using mutual information. Comp. Stats 28(2), 621–646 (2013)

5. Brown, G., Pocock, A., Zhao, M.J., Luján, M.: Conditional likelihood maximisa-
tion: a unifying framework for information theoretic feature selection. The Journal
of Machine Learning Research (JMLR) 13(1), 27–66 (2012)

6. Cai, R., Zhang, Z., Hao, Z.: BASSUM: A bayesian semi-supervised method for
classification feature selection. Pattern Recognition 44(4), 811–820 (2011)

7. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences (2nd Edition).
Routledge Academic (1988)

8. Cover, T.M., Thomas, J.A.: Elements of information theory. J. Wiley & Sons (2006)
9. Elkan, C., Noto, K.: Learning classifiers from only positive and unlabeled data. In:

ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (2008)
10. Koller, D., Sahami, M.: Toward optimal feature selection. In: International Con-

ference of Machine Learning (ICML). pp. 284–292 (1996)
11. Lawrence, N.D., Jordan, M.I.: Gaussian processes and the null-category noise

model. In: Semi-Supervised Learning, chap. 8, pp. 137–150. MIT Press (2006)
12. Margaritis, D., Thrun, S.: Bayesian network induction via local neighborhoods. In:

NIPS, pp. 505–511. MIT Press (1999)
13. Mohan, K., Van den Broeck, G., Choi, A., Pearl, J.: Efficient algorithms for

bayesian network parameter learning from incomplete data. In: Conference on Un-
certainty in Artificial Intelligence (UAI) (2015)

14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1988)

15. Pellet, J.P., Elisseeff, A.: Using markov blankets for causal structure learning. The
Journal of Machine Learning Research (JMLR) 9, 1295–1342 (2008)

16. Plessis, M.C.d., Sugiyama, M.: Semi-supervised learning of class balance under
class-prior change by distribution matching. In: 29th ICML (2012)

17. Pocock, A., Luján, M., Brown, G.: Informative priors for markov blanket discovery.
In: 15th AISTATS (2012)

18. Rosset, S., Zhu, J., Zou, H., Hastie, T.J.: A method for inferring label sampling
mechanisms in semi-supervised learning. In: NIPS (2004)

19. Sechidis, K., Calvo, B., Brown, G.: Statistical hypothesis testing in positive
unlabelled data. In: Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD), pp. 66–81. Springer Berlin Heidelberg (2014)

20. Smith, A.T., Elkan, C.: Making generative classifiers robust to selection bias. In:
13th ACM SIGKDD Inter. conf. on Knwl. Disc. and Data min. pp. 657–666 (2007)

21. Tsamardinos, I., Aliferis, C.F.: Towards principled feature selection: Relevancy,
filters and wrappers. In: AISTATS (2003)

22. Tsamardinos, I., Aliferis, C.F., Statnikov, A.: Time and sample efficient discovery
of markov blankets and direct causal relations. In: ACM SIGKDD (2003)

23. Yaramakala, S., Margaritis, D.: Speculative markov blanket discovery for optimal
feature selection. In: 5th ICDM. IEEE (2005)


